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Stress analysis of elastomeric materials at large 
extensions using the finite element method 
Part II Stress and strain distribution around 
rigid spherical particles 

Y. FUKAHORI ,  W. SEKI 
Research and Development Division, Bridgestone Corporation, Kodaira-shi, 
Tokyo 187, Japan 

The finite element method is applied to stress and strain analyses around rigid spherical 
particles in elastomers at large extensions. The stress and strain distribution computed agree 
well with the classical theoretical ones at small strain. At large extension, however, the 
maximum stress concentration factor increases greatly and the maximum strain concentration 
factor decreases slightly as strain increases. These tendencies are increased more in carbon 
black-filled elastomers than in unfilled ones, which can be understood reasonably by 
considering both the geometric and material non-linearity. Reinforcement of elastomers with 
rigid spherical particles was also analysed through a numerical computation. The computed 
results agree with the Guth and Mooney equations at low volume fraction of fillers. In carbon 
black-filled elastomers, on the other hand, where the modulus is much higher than that given 
by the above equations, the computations give a good agreement with the experiments, 
considering the 20% increase in effective diameter of the f i l ler.  

1. I n t r o d u c t i o n  
The addition of rigid spherical particles to polymeric 
materials is significantly important from the view- 
points of fracture initiation and filler reinforcement. 
Particularly in elastomers, most rubber articles of 
practical use are reinforced with carbon blacks, which 
gives rise to greatly improved mechanical properties 
of rubber compounds. A large number of studies has 
been reported for reinforcement of elastomers with 
carbon blacks, whose models are fundamentally based 
on Einstein's equation for the increase of viscosity by 
the addition of fillers. On the other hand, it is well 
known that there is a critical value of applied stress at 
which a cavity nucleates around a rigid spherical 
inclusion embedded in an elastomeric material sub- 
jected to an axisymmetrical load. As Oberth and 
Bruenner observed [1], a small cavity appeared within 
the matrix near a pole of the inclusion in the case of 
strong bonding at the particle-matrix interface when 
the applied uniaxial stress reached a certain critical 
value. This is considered to be consistent with the 
results obtained from the stress analysis given by the 
classical solution. 

It is quite surprising, however, that actual stress 
analyses have been rarely performed around a rigid 
sphere embedded in elastomeric materials, except for 
just a few empirical results, despite the fact that a 
tremendous amount of research on fracture phe- 
nomena and reinforcement in particle-elastomer sys- 
tems has been reported. One of the most serious 
reasons why stress analysis in these systems has not 
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been widely carried out is the difficulties in the nu- 
merical techniques such as a finite element analysis. As 
is well known, because a finite element method is 
based originally on the classical or small strain linear 
elasticity theory, there exist several difficulties which 
have to be overcome for the application of FEM to 
elastomers, concerning non-linear stress-strain 
relations and the incompressible behaviour of the 
eiastomer, in addition to its tremendous amount of 
deformation over several hundred per cent in 
failure. 

In Part I [2], we applied a newly developed finite 
element analysis to stress and strain analyses around a 
spherical hole in elastomers from small to very large 
extensions near their break and obtained the following 
conclusions. 

1. Stress and strain distributions around a spherical 
hole subjected to uniaxial tensile strain are similar to 
those given by classical theoretical solutions at small 
strain but they deviate from the classical theoretical 
ones as the strain increases. 

2. The maximum stress concentration factor in- 
creases and the maximum strain concentration factor 
decreases with increasing average strain. These ten- 
dencies are increased more in carbon black-filled elas- 
tomers than in unfilled ones. 

3. A successful description of these phenomena can 
be achieved by considering the non-linear properties 
in the stress-strain relation of rubber vulcanizates 
which increase as extension increases and carbon 
black content increases. 
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In Part II we apply a new numerical method to 
stress and strain analyses around a rigid spherical 
particle in an elastomeric material at large extension, 
and establish quantitative and systematic analyses for 
the fundamental bases of fracture and reinforcement 
in elastomers. 

2. Theoretical background 
2.1. Stress concentration around a rigid 

spherical inclusion 
According to classical elasticity theory [311 the stress 
around a spherical inclusion, whether it is a hole or 
rigid particle, represented in terms of the polar co- 
ordinate system (Fig. 1), is given by Equations 1 7 in 
Part I [2], provided that constants A, B and C in these 
equations for a rigid particle are given by 

rg~ o 13 - 10v 
A = 

4E 7 - 5v ' 

r~o 1 
B - 

8E 7 - 5v' 

ro3~0 5 (1 - 2v) 
C - 

8E 8 -  10v 

Oberth [4] and Oberth and Bruenner [1] studied 
the stress distribution around a steel sphere embedded 
in polyurethane rubber using a photoelastic method 
and made clear that the maximum stress is a small 
distance away from the particle surface as was predic- 
ted by classical elasticity theories. Moreover, Oberth 
and Bruenner [1], Gent and Park [5] and Cho and 
Gent [6] showed that a small cavity appeared 
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Figure 1 A cylinder of matrix containing a single sphere at its 
centre. 

abruptly within the matrix near the poles of the 
particle when the applied uniaxial stress reached a 
certain critical value. It is incredible, however, that 
stress analysis around a rigid spherical inclusion in 
elastomers is missing except for the classical solution 
and a few experimental analyses [1, 4]. Although a few 
papers [6, 7], have tried a brief finite element analysis 
for a rigid inclusion in elastomers, they are based on 
the assumption of the linear stress-strain relation in 
materials and are not valid for general stress analysis 
of real non-linear elastomeric materials under such 
large deformations in which a cavitation or crack 
occurs. As will be shown later, the accuracy of com- 
putation strictly depends on how accurate informa- 
tion can be introduced concerning the characteristics 
of materials, i.e. the strain-energy function of the 
material applicable for a wide range and wide mode of 
deformation. 

2.2. Theories of rigid filler reinforcement 
for elastomers 

Many theories have been proposed to describe filler 
reinforcement for elastomers. The earliest idea for 
filler reinforcement is based on Einstein's equation 
[8], in which the increase of the viscosity of a liquid by 
the addition of uniform spherical inclusions is calcu- 
lated by 

1"1 = q0 (1 + 2.5v) (1) 

where q and qo are the viscosity of the composite and 
the matrix liquid, respectively, and v is the volume 
fraction of the fillers. Guth [9] generalized the 
Einstein concept by introducing the interaction be- 
tween the spheres as Equation 2 

G = G O (1 + 2.5v + 14.1v 2) (2) 

where G and G o are the shear moduli of the composite 
and the matrix, respectively. Moreover, Mooney [10] 
proposed a slightly different equation considering 
the crowding factor, s (=volume occupied by the 
filler/true volume of the filler), s = 1.35 for close 
packed spheres 

O = G O exp \ l  - svJ (3) 

Although most of these theories assume perfect adhe- 
sion between the filler and the polymer matrix, Sato 
and Furukawa [11] discussed the case of imperfect 
adhesion between them, where they treated the non- 
bonded particles as special holes which produce a 
small increase in modulus. 

Some of these equations have been proved to be 
valid in a number of fillers except carbon blacks. The 
strong reinforcing effect of carbon blacks for 
elastomers is argued by many researchers [12-17] 
who considered the rubber absorbed on the surface of 
carbon blacks, called bound rubber or occluded rub- 
ber. The absorbed rubber is insoluble in originally 
good rubber solvents and forms an insoluble gel with 
the filler. The absorbed rubber appears in a glassy 
state and is regarded as part of the carbon black, 
whose thickness is assumed to be of the order of a few 
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nanometres. Therefore, the high reinforcing effect of 
carbon blacks on elastomers may be due to the vol- 
ume fraction of filled carbon blacks. 

3. Experiments and numerical  
t reatments  

3.1. Materials and their strain-energy function 
The materials used here are unfilled (NR1), slightly 
filled (NR2) and heavily filled (NR3) natural rubber 
vulcanizates with carbon blacks. The relevant com- 
pounding recipes are given in Part I [2]. NR2 was 
mostly used for computation, unless noted otherwise. 
Strain energy function, W, is determined through 
strip-biaxial (pure shear) testing with a newly designed 
apparatus. As indicated in detail elsewhere [18-21], 
8 W/SI1 and 8 W/�9 2 are not constants but have typical 
features varying with I1 and 12, which indicates that 
the stress-strain relation of real elastomers cannot be 
represented by a simple linear relation, particularly 
under large deformation. The accuracy of the 
numerical method strongly depends on how accurate 
is the Wfunction used for the calculation, and it seems 
to be the best way at the present technical level to 
evaluate empirically the W function through biaxial 
testing. 

3.2. The numerical model 
As the theoretical backgrounds of the finite element 
method (FEM) have already been described in detail 
in Part I [2], we will only give a brief outline of the 
newly developed FEM in this report. The method 
includes two important points. First, the strain-energy 
function of real elastomers, the elastic energy stored in 
a deformed body, is experimentally evaluated through 
strip-biaxial (pure shear) testing. Second, computer 
programming has been improved based on the mixed 
variational method to treat the problems of 
incompressibility in elastomers. 

Spherical inclusions randomly distributed in a finite 
matrix can be represented by a cylinder of matrix 
containing a single sphere of a radius r o at its centre, 
its radius and the height being R o and 2R o, respect- 
ively, in a finite element analysis, as shown in Fig. 1. 
Two assumptions are introduced: infinitely high 
modulus of a solid sphere and a perfect bonding 
between solid spheres and matrix elastomers. The 
cylinder can be predicted by the plane ABCDEF using 
axisymmetric elements, the z-axis being the axis of 
symmetry. The boundary conditions which must be 
satisfied in the calculation are as follows (shown in 
Fig. l). 

1. The surface of the solid sphere is perfectly con- 
strained, that is, the sphere cannot be deformed at its 
interface (Fig. 2). 

2. No constraint is imposed on the side surface of 
the cylinder, i.e. free deformation and no external 
force. 

3. The circular surface of the cylinder is constrained 
to remain perpendicular to the z-axis, but freely 
deformable in the x-direction. 
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Figure 2 The plane ABCDEF given in Fig. 1 using axisymmetric 
elements, the z-axis being the axis of symmetry. 

The deformation of the grid is achieved by loading 
the grid (a uniform stress, G0) by prescribed 
displacement in the z-direction. 

The volume fraction v of spheres which occupy 
the system can be calculated by the relation, 
v = 2/3(ro/Ro) 3. An increase in the value of the geo- 
metrical parameter ro/R o is equivalent to the spheres 
being close together. In the present computation, the 
radius of the sphere, to, was kept constant, while that 
of the cylinder was varied, the relation between the 
geometric parameter, ro/Ro, and volume fraction, v, 
being given in Table I. 

The computation gives the maximum principal 
stress (true stress), cy, and the maximum principal 
strain, e. Uniform (average) stress applied to the sys- 
tem, G 0, is calculated from the sum of the force applied 
to a circular surface of the cylinder divided by its 
surface area. All stress and strain fields are represented 
by the stress concentration factor ~ (=cy/c%) and 
strain concentration factor 13 (=e/%) and the max- 
imum stress and strain concentration factors, ~max and 
13 ..... respectively. 

Moreover, in this paper, we performed a three- 
dimensional simulation for a square pillar of matrix 
elastomers containing a single sphere at its centre. 
Although two-dimensional simulation for a cylinder is 
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T A B L E  I Relation between the geometric parameter, ro/Ro, and z 
volume fraction, v 

ro/R o v (%) 

1/12 3.85 • 10 -2 
1/5 5.33 x 10 -1 
1/2 8.33 
1/1.5 1.98 x 10 
1/1.2 3,85 x 10 

quite useful for stress analysis around an inclusion or 
at a corner and edge with sufficiently high accuracy, 
because it is easy to give very fine meshes in two- 
dimensional simulation, cylinders cannot fill up the 
space. On the other hand, although it is difficult to 
give fine meshes in three-dimensional simulation, 
cubes can fully fill up the space and thus give better 
natural boundary conditions for estimating the total 
figures in dynamics, such as the stress-strain relation 
and filler reinforcement. In this paper, we used three- 
dimensional simulation only for the analysis of filler 
reinforcements, as shown in Fig. 3. The boundary 
conditions are almost the same in both the two- and 
three-dimensional simulations, except that all deflec- 
tions perpendicular to the z-axis on the side surface of 
the cube are constrained to be equal in the three- 
dimensional simulation. Fig. 4 gives the finite element 
model for the three-dimensional computation. 
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Figure 3 A cube of matrix containing a single sphere at its centre. 
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4. Results and discussion 
4.1. Stress and strain distribution around 

rigid spherical particles subjected to 
uniaxial tensile stress 

4. 1. I. Theoret ical  so lu t ions  
The stresses predicted in the polar coordinates are 
given by six polar elements (~r~, cyg~, cY00, cyst, %0, 
c~0e) as shown in Equations 1-5 in Part I [2]. In this 
paper we used three principal stresses, ~ (i = 1, 2, 3) 
and the maximum principal stress between them by 
solving Equation 4 

(Yrr - -  (y (~r~ (TrO 

(~rcp (~cpQ - -  ~ CYO~ 9 = 0 

C~rO r162 (5"00 --  

(4) 

Although, in other works [-1, 4], the polar element is 
directly used for stress analysis, we use the maximum 
principal stress, cs, and the maximum principal strain, 
~, because these parameters seem to play more import- 
ant roles in studies of fracture analysis and filler 
reinforcement. 

Figs 5 and 6 are theoretical contour maps of stress 
concentration factor, %r/c%, and strain concentration 
factor, ar~/%, around a rigid spherical particle sub- 
jected to uniaxial stress represented on the 
undeformed coordinates. As reported by Oberth and 
Bruenner [1], the maximum stress and the maximum 
strain appears at a point slightly away from the poles 
along the z-axis, and their absolute values are 2.30 
and 1.71, respectively. However, contour maps of 
stress and strain concentration factors exhibited by 
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Figure 4 Finite 
computation. 

element model for the three-dimensional 
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Figure 5 Theoretical contour maps of stress concentration factor, 
~,,/c~ o around a rigid spherical particle represented on the 
undeformed coordinates. 

Figure 7 As Fig. 5, but of stress concentration factor exhibited by 
the maximum principal stress, ~/c~ 0 (= ~). 

Figure 6 As Fig. 5, but of strain concentration factor, 8,,/%. 

1.68 

~ b l  .71 

1.12 
31 

// 
0.94 

1 .87-  
1.68 

0.56 
0.38 

Figure 8 As Fig. 6, but of strain concentration factor exhibited by 
the maximum principal strain, ~/% (= 13). 

the maximum principal stress and the maximum prin- 
cipal strain give slightly different features. In Fig. 7, 
a l though there is a high stress concentra t ion of the 
same value seen near the pole of the particle, the 
maximum stress concentra t ion occurs on the surface 
of the particle at 0 = 23 ~ the value being 2.52. Fig. 8 
also gives the maximum strain concentrat ion at 0 
= 43 ~ the value being 1.87 in addit ion to a high strain 

concentra t ion along the z-axis, 1.71. Cavities which 
appeared not  only on the pole but near other  parts of 
the surface [1, 3-5]  within the matrix elastomers seem 

to prove that the expression by the maximum princi- 
pal stress and strain is more  preferable than that  by 
the direct polar elements. 

4. 1.2. Numerical  results computed  at 
ro/Ro = 1 /12 

Now we show contour  maps of  ~ and 13 a round  a rigid 
spherical particle computed  under  the condit ion of  
ro /R  o = 1/12, in which the disturbance by adjacent 
particles in stress and strain distribution can be 
neglected. 

4 4 7 5  



Figs 9 and 10 correspond to the case of a small 
average strain (% = 10%). It is clearly seen that the 
stress and strain distribution a round  a rigid spherical 
particle and their absolute values computed  by the 
numerical method based on the strain-energy function 
obtained experimentally agree well with theoretically 
calculated ones given in Figs 7 and 8, when the 
average strain is small. On  the other hand, contour  
maps give different features at large average strain. 
Fig. 11 is a contour  map  of stress concentra t ion factor 
computed  at So = 100%. Both stress concentra t ion 
factors appearing at 0 = 30 ~ and at a point  along the 
z-axis are considerably larger than theoretical ones, 

and the maximum stress concentrat ion changes its 
position from 0 = 30 ~ to 0 = 0, i.e. along the z-axis as 
shown in Fig. 11. When  an average strain is 200% 
(Fig. 12), the maximum stress concentra t ion occurs 
along the z-axis and its absolute value (~m,x = 4.93) 
becomes much higher than the theoretical one 
(~max = 2.30). On  the other  hand, the strain distribu- 
tion and the maximum strain concentrat ion factor 
a round  a hard spherical particle are almost  independ- 
ent of average strain, which is shown in Figs 13 
(% = 100%) and 14 (% = 200%). 

These situations are unders tood more  clearly by the 
plots of ~ and [~ against the distance from the surface 
of the filler along the z-axis and the x-axis. Fig. 15 is 
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Figure 9 Contour maps of ~ around a rigid spherical particle 
computed at % = 10% and ro/R o = 1/12. 
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Figure 11 As Fig. 9, but at a o = i00% and ro/R o = 1/12. 
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Figure I0 As Fig. 9, but of [3. 
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Figure 12 As Fig. 9, but at a o 
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= 200% and ro/R o = 1/12. 
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Figure 15 a as a function of r/r o along the z-axis at various strains, 

Figure 13 As Fig. 10, but at a o = 100% and ro/R o = 1/12. 
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Figure 16 ~ as a function of r/r o along the z-axis at various strains. 
(---) Theoretical. 

Figure 14 As Fig. 10, but at s o = 200% and ro/R o = 1/12. 

the distribution of ~ plotted as a function of the 
position, r/ro, at various average strains along the 
z-axis. When  the average strain is less than 10%, the 
a - r / r  o curve makes a good fit with the theoretical one. 
As the average strain increases, however, the ~ - r / r o  

curves  rapidly increase, particularly at the small dis- 
tance r, which finally produces a very high value of 
c%ax, despite the fact that  the position which gives C~ma x 
seems to be independent  of  the magni tude  of average 
strain. On  the other hand, the ~ - r / r  o curves plotted as 
a function of the posit ion along the z-axis are little 
influenced by the magnitude of  average strain, as 
shown in Fig. 16. 

It is shown that the plots of  ~ and ~ against the 
distance along the x-axis are almost  independent of  
the magnitude of average strain, as shown in Figs 17 
and 18, respectively. 

4. 1.3. Numerical  results computed at 
ro/Ro = 2 / 3  

Stress and strain distribution a round  a rigid spherical 
particle are strongly disturbed by adjacent particles. 
Fig. 19 is a contour  map  of cz computed  at r o / R  o = 2/3 
corresponding to the case of strong interaction with 
adjacent particles, where it is seen that the high stress 
region spreads over the adjacent particles along the 
z-axis. In Fig. 20 the maximum strain concentra t ion 
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Figure 17 As Fig. t5, but along the x-axis. ( - - )  Theoretical; %: 
(--) 10%, (-- -) 100%, ( - - -  --) 200%. 

Figure 19 Contour maps of ct computed at % = 10% and 
ro/Ro = 2/3. 

2.0 

1.5 

1.0 

0.5 

0.0 

-0.5 L _  I i i 
.0 1.5 2.0 2.5 3.0 3.5 

r / t o  

Figure 18 As Fig. 16, but along the x-axis. (---) Theoretical; 
( ) % = 200%. 

factor, [3 . . . .  is at the boundary  of the cylinder, i.e. the 
centre between two adjacent  particles along the z-axis. 
Figs 21 and 22 give clearer images of  the s t rong 
increase in (Xma x and 13~a~ as a function of ro/R o 
respectively. 

4. 1.4. Relation between increase of stress 
concentration and non-linearity in 
elastomers at large deformation 

As we have seen so far, much  higher stress concentra-  
tion and slightly lower strain concentra t ion  occur 
a round  a rigid spherical particle when the particle is 
subjected to a large average strain, compared  with the 
classical theoretical  values. In Par t  I [2] we discussed 
the reason why ~'max and ~max a round  a spherical hole 
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Figure 20 As Fig. 19, but of !3. 

change their magni tudes  deviating from the classical 
theoretical values as the average strain increases, in 
relation to geometr ic  and material  non-lineari ty under 
large extension. In the case of a spherical hole, 
a l though bo th  geometr ic  and mater ial  non-lineari ty 
play impor tan t  roles in the deviat ion of eZm~ x and 13m, x 
f rom t h e  classical (infinitesimal strain) theoretical 
solution, we concluded that  the main  contr ibut ion to 
the increase of ~max and the decrease of 13m, x resulted 
f rom the mater ial  non-l ineari ty in elastomers,  which 
increases as extension increases and also as filler 
content  increases. 

Figs 23 and 24 are (Xma x and [3m~ x computed  and 
plotted as a function of strain ampl i tude in three 
rubber  vulcanizates, NR1 (unfilled), N R 2  (slightly fil- 
led) and NR3 (heavily filled). Although, in all 
materials,  ezra, ~ greatly increases as average strain 
i n c r e a s e s ,  [~max shows a slight decrease with increasing 
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Figure 21 : ~  as a function of ro/R o. ~o: (O) t00%, (�9 10%. 

average strain, whose tendency is seen most apparent- 
ly in heavily reinforced rubber, NR3. As explained in 
detail in Part I [23, Yang [22] calculated 0~ma x and [3m, x 
under moderately large extension for a rigid circular 
inclusion, using the strain-energy function of the 
Mooney material. The results thus calculated for a 
rigid inclusion in the Mooney material are the same as 
for a spherical hole, that is, ~max increases greatly and 
[3r~ax increases slightly as the average strain increases, 
due to geometric non-linearity. Fig. 23 in our nu- 
merical results suggests that in the discrepancy be- 
tween 0[ma x thus computed and the classical theoretical 
solution, geometric non-linearity makes a greater con- 
tribution than material non-linearity. 

However, Fig. 24 shows that the decrease of 13ma~ 
with increasing strain amplitude in elastomers cannot 
be interpreted by geometric non-linearity, and should 
be attributable to the material non-linearity. There- 
fore, what we can say at the present stage of the 
research is that both geometric and material non- 
linearity play important roles in the deviation of O~m,x 
and ~max from the classical theoretical solution as 
extension increases. 

The facts that ~'max increases and ]3ma X decreases with 
increasing strain amplitude in elastomeric materials 
can be interpreted by considering the material non- 
linearity of elastomers, i.e. the stress hardening under 
large extension, as seen in Part I [2]. That is, we can 
see that under large extension, the elastomer compo- 
nent which surrounds a spherical rigid particle gradu- 
ally increases the stiffness as it approaches the boundary 
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Figure 22 13ma X as a function of ro/R o. to: (O) 100%, (�9 10%. 
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Figure 23 :z.,.x plotted against strain for three rubber vulcanizates: 
(@) NR1, (@) NR2, (O) NR3. 
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Figure 24 ~max plotted against strain for three rubber vulcanizates: 
(Q) NR1, (| NR2, (0) NR3. 

of the particle. In other words, the system which 
surrounds the particle can be regarded as being con- 
structed of components of different stiffness when it is 
highly strained. A detailed explanation is given in 
Part I [2]. 

4.2. Filler r e in fo rcement  for e las tomers  
Now let us consider reinforcement of elastomers with 
carbon blacks through a numerical method. As ex- 
plained earlier, for the purpose of elucidating the 
mechanism of filler reinforcement, we performed 
three-dimensional simulation with a cube of matrix 
elastomers containing a single sphere at its centre. 
Figs 25 and 26 are examples of such a simulation, i.e. 
the contour maps of a and 13 at an average strain of 
10% and ro/Ro = 2/3 corresponding to Figs 19 and 20 
performed in  two-dimensional computation, respect- 
ively. A slight disagreement between both 
computations arises from the rough meshing in three- 
dimensional computation. In Fig. 27 the ratio of the 
modulus of the composite filled with rigid spherical 
particles, G, to that of the unfilled matrix rubber, Go, is 
plotted against the volume fraction of filler, v. The 
solid curve, computed (1), in Fig. 27, is the computed 
result based on the strain-energy function of the un- 
filled rubber vuleanizate, which is compared with 
other theoretical dotted curves given by Equations 
1-3. The computed result seems to agree with the 
Guth and Mooney equations at v _< 0.25. On the other 
hand, open circles in Fig. 27 are empirically obtained 
at 10% strain in a simple extension test for rubber 
vulcanizates filled with carbon blacks of various vol- 
ume fractions. Obviously the experimental results are 
much higher than the computed and calculated ones. 

4 4 8 0  

3.13 

Figure 25 Co n to u r  m a p s  of ~ at t 0 = 10% and ro/R o = 2/3 

c o m p u t e d  in a three-dimensional  condit ion.  

As has been discussed in the literature [12-17], the 
strong reinforcement by carbon blacks is considered 
to be attributable to the increase of filler surface, i.e. 
the increase of the diameter of filler, composed of the 
glassy state of rubber molecules (gel). The thickness of 
the increased diameter has been decided to be of the 
order of a few nanometres through many kinds of 
analytical method, such as solvent adsorption, elec- 
tron microscope and the pulsed NMR. Therefore, we 
attempted to calculate the modulus of reinforced rub- 
bers assuming that a carbon black is surrounded by a 
surface layer of glassy-state rubber whose modulus is 
1000 times higher than that of the matrix rubber, that 
is, the strain-energy function of the surface layer is 
assumed to be 1000 times higher than that of the 
unfilled rubber and its thickness is 10% of the dia- 
meter of the particle, as shown in Fig. 28. Filled circles, 
computed (2), in Fig. 27 are results thus computed for 
various filler contents. Considerably good agreement 
between computations and experiments is realized. 
Because the diameter of a carbon black used in the 
present paper, HAF carbon black, is roughly 
20-30 nm, the thickness of the surface layer will be 
2-3 nm, whose thickness agrees well with that given in 
the literature. 
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Figure 28 Schematic representation of a carbon black surrounded 
by the surface layer of the glassy state of rubber. 

Figure 26 As Fig. 25, but of 13. 
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Figure 27 Plots of reduced modulus,  GIG o against the volume 
fraction of filler, v: numerical and theoretical results compared with 
experimental ones. 

5. Conclusion 
Stress and strain distribution around rigid spherical 
fillers in elastomers subjected to uniaxial stress, com- 
puted based on the strain-energy function obtained 

experimentally, agree well with the classical theoret- 
ical solutions at small average strain. At large exten- 
sion, however, the maximum stress concentration 
factor increases rapidly and the maximum strain con- 
centration factor decreases slightly as average strain 
increases. These tendencies will be increased more in 
carbon black-filled elastomers compared with unfilled 
elastomers. The phenomena can be understood 
reasonably by considering both geometric and mater- 
ial non-linearity which play important roles in the 
deviation of ~max and 13m, x from the classical 
theoretical solutions as extension increases. 

Reinforcement of elastomers with rigid spherical 
particles was also analysed through a numerical com- 
putation. The computed results agree with the Guth 
and Mooney equations at low volume fraction of 
fillers. In carbon black-filled elastomers, on the other 
hand, where the modulus is much higher than that 
given by the above equations, the computations give a 
good agreement with the experiments, considering the 
20% increase in effective diameter of the filler. 
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